Editorial Type:
Article Category: Research Article
 | 
Online Publication Date: 24 Feb 2011

Asian 30-Second Land Cover Dataset

,
, and
Page Range: 132 – 140
DOI: 10.5555/arwg.3.2.r1r7840m633848r3
Save
Download PDF

The objective of this study is to produce a land cover classification dataset for the whole of Asia using a NOAA AVHRR 1-km dataset. Ground truth data were mainly collected from existing thematic maps, which were obtained from members of the Land Cover Working Group (LCWG) of the Asian Association on Remote Sensing (AARS). Classification was mainly based on cluster analysis of the monthly ratio of surface temperature to Normalized Difference Vegetation Index (NDVI) for seven months from April to October 1992. Additional variables, such as DEM, the maximum monthly composite NDVI in a year, and the minimum monthly composite NDVI in a year were also used in the classification processing. A CD-ROM including the land cover classification dataset has been published.

Le but de cet article est de produire une base de données de classification de la couverture des sols pour l'ensemble de l'Asie, utilisant les données de 1km de NOAA AVHRR. La vérification-terrain a été effectuée en se basant sur des cartes thématiques existantes, obtenues du groupe de travail sur la couverture des sols (Land Cover Working Group, LCWG) de l'Association asiatique de télédétection (Asian Association on Remote Sensing, AARS). La classification a été obtenue grâce â l'analyse par grappes du rapport mensuel entre la température de surface et l'Index normalisé de la différence de végétation (NDVI) pour une période de sept mois (d'avril à octobre 1992). D'autres variables, comme la DEM, le composite mensuel maximal du NDVI pour une année, et le composite minimal du NDVI pour l'année ont été utilisées pour extraire la classification. Un CD-ROM, comprenant la classification de données de la couverture des sols a été publié.

Brown, J. F., Loveland, T. R., Merchant, J. W., and Reed, B. C. 1993. Using multisource data in global land cover characterization. Photogrammetric Engineering and Remote Sensing 59:977-87.

Eidenshink, J. C. and Faundeen, J. L. 1994. Global Land 1-KM AVHRR Data Set Project. International Journal of Remote Sensing 15:3443-62.

Hastings, D. 1998. The Global Land One-km Base Elevation (GLOBE) Projection. http://www.ngdc.noaa.gov/seg/topo/global.shtml. http://www.ngdc.noaa.gov/seg/topo/global.shtml

Holben, B. N. 1986. Characteristics of maximum-value composite image from temporal AVHRR data. International Journal of Remote Sensing 7:1417-34.

Husak, G. J., Hadley, B. C. and McGwire, K. C. 1999. Landsat thematic mapper registration accuracy and its effects on the IGBP validation. Photogrammetric Engineering and Remote Sensing 65:1033-39.

Kerber, A. G. and Schutt, J. B. 1986. Utility of AVHRR channel 3 and 4 in land cover mapping. Photogrammetric Engineering and Remote Sensing 52:1877-83.

Lambin, E. F. and Ehrlich, D. 1995. Combining vegetation indices and surface temperature for land cover mapping at broad spatial scales. International Journal of Remote Sensing 16:573-79.

Loveland, T. R., Merchant, J. W., Ohlean, D. O., and Brown, J. 1991. Development of a land cover database for conterminous U.S. Photogrammetric Engineering and Remote Sensing 57:1453-63.

Nemani, R. and Running, S. 1989. Estimation of surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology 28:276-84.

Price, J. C. 1984. Land surface temperature measurements from the split-window channels of the NOAA-7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research 89:7231-37.

Tateishi, R., Wen, C. G., and Perera, L. K. 1997. Land cover classification system for continental/global application. Asian-Pacific Remote Sensing and GIS Journal 10:1-9.

Tateishi, R. and Wen, C. G. 1997. Global four minute land cover data set. Journal of the Japan Society Photogrammetry and Remote Sensing 36:62-74.

Tucker, C. J., Townshend, J. R., and Goff, T. E. 1985. African land cover classification using satellite data. Science 227:369-75.

  • Download PDF