Editorial Type:
Article Category: Research Article
 | 
Online Publication Date: 24 Feb 2011

The Use of Spatial and Non-Spatial Information Systems/Analyses for Predicting Crop Dynamics in the Nile Delta, Egypt

Page Range: 22 – 33
DOI: 10.5555/arwg.5.1.qt2p30651276g42g
Save
Download PDF

The objectives of this paper are to develop a new approach to crop-dynamics prediction, based solely on geomatics technology, and secondarily, to apply this approach in order to monitor future crop dynamics in the Nile Delta of Egypt. The pattern of crop green-up is examined by statistical analysis NOAA NDVI (Normalized Difference Vegetation Index) satellite imagery. The analysis focusses on November 1998 to April 1999, a winter-crop calendar. It also examines the sustainability of land to support various crops, that is, is cropping land area being decreased or increased over time. Crop coverage is predicted using a combination of logistic regression spatial analysis and Markov non-spatial analysis. The combined approach developed for this study capitalizes on the strengths of each technique—the Markov analysis was used to predict the actual number of landscape units (pixels) expected to show cropping pattern changes, while logistic regression was used to identify the spatial distribution of the Markov prediction. The results of this study indicate that when Markov and logistic regression models are used, each approach compensates for the limitations of the other.

Les objectifs de cet article sont, dans un premier temps, de développer une nouvelle approche de la prévision des dynamiques des récoltes, basée uniquement sur la technologie géomatique, et dans un second temps d'appliquer cette approche pour surveiller la dynamique de récolte dans le Delta du Nil en Egypte. La distribution de la germination est examinée par analyse statistique basée sur l'Indice de végétation différence normalisée (NDVI) d'imageries satellitales (NOAA). L'analyse examine la période de novembre 1998 à avril 1999, la période des récoltes d'hiver. L'article examine également le potentiel des terres pour porter les différentes récoltes, à savoir si la surface de récolte diminue ou augmente dans le temps. La couverture est prédite en combinant une analyse spatiale de régression logistique et une analyse non-spatiale markovienne. Cette approche combinée développée pour cette étude s'appuie sur les acquis de chaque technique—l'analyse markovienne est utilisée pour prédire le nombre de pixels que l'on estime avoir changé de type de récolte, alors que la régression logistique est utilisée pour identifier la distribution spatiale de la prévision markovienne. Les résultats de cette étude indiquent que quand les modèles markovien et de régression logistique sont utilisés, chaque approche compense les limitations de l'autre.

Apan, A. A. and Peterson, J. A. 1998. Probing tropical deforestation: The use of GIS and statistical analysis of georeferenced data. Applied Geography 18:137-52.

Arevalo, J. R. 1999. Tree regeneration and future dynamics of the laurel forest on Tenerife, Canary Islands. Journal of Vegetation Science 10:861-68.

Boerner, R. E., Demers, M. N., Simpson, J. W., Artigns, F. J., Silva, A., and Berns, L. A. 1996. Markov models of inertia and dynamism on two contiguous Ohio landscapes. Geographical Analysis 28:56-66.

Brown, D. S. 1952. Climate in relation to deciduous fruit production in California, V: The use of temperature records to predict the time of harvest of apricots. Proceedings of the American Society for Horticultural Science 60:197-202.

Cicone, R. C., and Metzler, M. D. 1982. Comparisons of Landsat MSS. Paper presented to the 8th International Symposium on Machine Processing of Remotely Sensed Data, Purdue University, Indiana.

Curran, P. J. 1980. Multispectral remote sensing of vegetation amount. Progressive Physical Geography 4:315-41.

Eastman, J. R., ed. 1999. IDRISI Users' manual. Worcester, MA: Clarke University.

FAO. 1978. Crop calendars. FAO Plant Production and Protection Paper, no 12, UN/FAO, Rome.

Fung, T. and Jim, C. Y. 1998. Assessing and modeling hill fire impact in county parks with Spot HRV images and GIS. Geocarto International 13:47-58.

Gupta, S. 1999. Discrete Markov chains—An analytical tool for productivity analysis of surface mining systems. International Journal of Surface Mining: Reclamation and Environment 13:111-16.

Hartfield, J. L. 1983. Remote sensing estimates of potential and actual crop yield. Remote Sensing of Environment 13:301-11.

Hathout, S. 1988. Land use change analysis and prediction of the suburban corridor of Winnipeg, Manitoba. Journal of Environmental Management 27:325-35.

Holben, B. N., Tucker, C. J., and Fan, C. J. 1980. Spectral assessment of soybean leaf area and leaf biomass, Photogrametric Engineering and Remote Sensing 45:651-656.

Jackson, R. D., Slater, P. N., and Pinter, P. J. 1983. Discrimination of growth and water stress in wheat by various vegetation indicates through clear and turbid atmospheres, Remote Sensing of Environment 15:187-208.

Jordan, C. F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663-66.

Kemp, W. P. 1987. Probability of outbreak for rangeland grasshoppers (orthoptera: Acridadae) in Montana: Application of Markov principals. Journal of Economic Entomology 80:1100-5.

Kriegler, F. J., Malila, W. A., Nalepka, R. F., and Richardson, W. 1969. Preprocessing transformations and their effects on multispectral recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of the Environment, ed. L. Pressler, 97-131. Ann Arbor, MI: American society for photogrammetry and remote sensing.

Lieth, H. 1974. Phenology and seasonality modeling: New York: Springer-Verlag.

Lieth, H. 1971. The pheno-logistical viewpoint in productivity studies. In Productivity of forest ecosystems: Proceedings of the Brussels Symposium, ed. P. Duvignead, 71-84. Paris: UNESCO.

Lieth, H. and Whittaker, R. H., eds. 1975. Primary productivity of the biosphere. New York: Springer-Verlag.

Mamat, R., andMansor, S. B. 1999. Remote sensing and GIS for flood prediction. In Proceedings of the Twentieth Asian Conference of Remote Sensing, Hong Kong. Accessed September 29, 2002, from http://www.jlgis.cuhk.edu.hk/acrs99/on the World Wide Web. http://www.jlgis.cuhk.edu.hk/acrs99/on the World Wide Web

Meyer, A. and Martinez-Casasnovas, J. A. 1999. Prediction of existing gully erosion in vineyard parcels of the NE Spain: A logistic modeling approach. Soil and Tillage Research 50:319-31.

Morain, S. A. 1974. Phonology and remote sensing. In Phonology and seasonality modeling, ed. H. Lieth, 55-76. New York: Springer-Verlag.

Muller, M. R., and Middleton, J. 1994. A Markov model of land use change in the Niagara region, Ontario, Canada. Landscape Ecology 9(2):151-57.

Norwine, J., and Greegor, D. H. 1983. Vegetation classification based on AVHRR satellite imagery. Remote Sensing of Environment 13:69-78.

Odland, J. 1988. Spatial autocorrelation. Scientific Geography Series. Vol. 9. Newbury Park, CA: Sage Publication.

Ormsby, J. P. 1982. Classification of simulated and actual NOAA-6 AVHRR data for hydrologistic land surface feature definition. Institute of Electrical and Electronics Engineers. Geoscience and Remote Sensing 20:262-67.

Pampel, F. C. 2000. Logistic regression—A primer. Quantitative Applications in the Social Sciences. Thousand oaks, CA: Sage Publications.

Pascal, A. J. 1972. Biologistical and phonologistical observations. In WMO Agricultural Meteorology, no. 310, 185-210. Geneva, Switzerland: World meteorological organization.

PCI. 1996. EASI/PACE software (version 6.0) and users' manuals. Richmond Hill, ON: PCI, Inc.

Podolsky, A. S. 1984. New phonology: Elements of mathematical forecasting in ecology. New York: Wiley.

Rowbotham, D. N., and Dudycha, D. 1998. GIS modelling of slope stability in Phewa Tal watershed, Nepal. Geomorphology 26:151-70.

Sarmiento, G., and Monasterio, M. 1983. Life forms and phonology. In Tropical Savannas, Ecosystems of the World, Vol. 13, ed. F. Bourlier, 79-97. Amsterdam: Elsevier.

Schneider, S. R., McMinnis, S. R., and Gatlin, J. A. 1981. The use of NOAA/AVHRR visible and near-infrared data for land remote sensing. NOAA Technical Report, Washington D.C.

Seaton, H. L. 1955. Scheduling planning and predicting harvesting maturities for processing vegetables. Food Technolology 9: 202-212.

Taylor, F. G. 1974. Pheno-dynamics of production in a mesic deciduous forest. In Phonology and seasonality modeling. Ed. H. Lieth, 237-54. New York: Springer-Verlag.

Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-50.

Tucker, C. J., Gatlin, A., and Schneider, S. R. 1984. Monitoring vegetation in the Nile Delta with NOAA-6 and NOAA-7 AVHRR. Photogrametric Engineering and Remote Sensing, 50: 53-61.

Tucker, C. J., Hielkema, J. U., Roffey, J. 1985. Satellite remote sensing monitoring in desert locust breeding areas. International Journal of Remote Sensing 6:127-38.

Tucker, C. J., Holben, B. N., Elgin, J. H., and McMurtrey, J. E. 1981. Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing of Environment 11: 171-89.

Tucker, C. J., Vanpreat, C., Boerwinkle, E., and Gaston, A. 1983. Satellite remote sensing of total dry matter accumulation in the Senegalese Sahel. Remote Sensing of Environment 13:461-74.

UNESCO. 1979. Tropical grazing land ecosystems. Paris: UNESCO.

Vinodgradov, B. V. 1977. Remote sensing and mapping of rangelands. Soviet Journal of Remote Sensing 3:378-392.

Wielgolaski, F. 1974. Phenology in agriculture. In Phenology and seasonality modeling, ed. H. Lieth, 369-81. New York: Springer-Verlag.

Wrigley, N. 1976. An introduction to the use of logit models in geography. Concepts and techniques in modern geography. no. 10. Norwich: Geo Abstracts Ltd.

Zhou, G. and Liebhold, A.M. 1995. Forecasting the spatial dynamics of gypsy moth outbreaks using cellular transition models. Landscape Ecology 10(3):177-89.

  • Download PDF