Editorial Type:
Article Category: Research Article
 | 
Online Publication Date: 03 Mar 2011

The Use of Remote Sensing and Geographical Information Systems for the Forecasting of Wheat Yield by Ostan in Iran

and
Page Range: 221 – 236
DOI: 10.5555/arwg.6.4.w85wq44202318541
Save
Download PDF

Low-cost, accurate yield prediction is an important tool for assessing the state of the world's grain markets. Governments and organizations around the world use geomatics technologies, such as remote sensing and geographical information systems (GIS), as a means of providing practical, real-time analysis capabilities, which can be utilized in many ways, including yield forecast. This paper outlines a procedure to forecast wheat yields at the end of a growing season. Remote sensing data such as SPOT imagery were used, in combination with IDRISI and ArcView software, for yield forecasting. In this study the forecasting of wheat yields was done over two growing seasons; namely, a short growing season and a long growing season. Forecasts were made for 9 Iranian Ostans (provinces) with short growing seasons and for 19 (the remaining provinces) with long seasons. Multiple regression analysis was used for forecasting wheat yield. The dependent variable for this analysis was the wheat yield for each province, for the years 2000, 2001, and 2002 and for the total of these three years. The independent variables for the analysis were the biomass index (NDVI), total monthly precipitation, total monthly temperature, total monthly bright-sunshine hours, and total amount of fertilizer for the growing period. The NDVI data were available from SPOT imagery of 1 × 1 km resolution, with a 10-day maximum-value composite coverage over the growing season. The results of this study showed that the forecast of wheat yields after the short growing season was very significant in comparison to the reported yield for the total of the three years combined (r-value of 0.986), as well as for each year individually (r-value correlations of 0.963, 0.846, and 0.778, respectively). In the long-growing-season regions the forecast was less significant for the total of the three years combined (r-value of 0.681), as well as for each year individually (r-values between forecast and reported were 0.715, 0.644, 0.696, respectively). These results indicate that the forecast of wheat yields for the short growing season is more accurate than for the long growing season. One would also expect that, if other independent variables such as soil morphology and farm management were included in the analysis, the forecast of the wheat yield would be more accurate.

Les prévisions de récolte précises et bon marché constituent un outil important pour saisir la situation des marchés mondiaux des céréales. Les gouvernements et les organisations de par le monde utilisent des technologies géomatiques, comme la télédétection et les systèmes d'information géographique (SIG) comme des moyens pour fournir des capacités d'analyse en temps réel utilisables de différentes manières notamment pour prévoir les récoltes. Cet article décrit une procédure pour prévoir les récoltes de blé à la fin de la saison de croissance. Des données de télédétection, telle que l'imagerie SPOT, ont été utilisées en combinaison avec les logiciels IDRISI et ArcView pour réaliser ces pronostics. Dans cette étude, la prévision des récoltes de blé a été établie pour deux saisons de culture, à savoir, une saison de culture courte et une saison de culture longue. Les prédictions ont été faites pour 9 provinces iraniennes (Ostans) à saison courte et pour les 19 autres provinces aux saisons longues. L'analyse par régression multiple a été employée pour les prévisions. La variable dépendante dans cette analyse est le rendement de blé dans chaque province pour les années 2000, 2001, et 2002 et pour le total de ces trois années. Les variables indépendantes dans cette analyse sont l'indice de biomasse (NDVI), les précipitations mensuelles, la température totale mensuelle, le nombre d'heures de rayonnement solaire mensuel et la quantité totale d'engrais utilisée pendant la période de croissance. Les données NDVI ont été extraites à partir d'images SPOT d'une résolution de 1 × 1 km, avec une durée moyenne de couverture composite maxima de 10 jours pendant la saison de croissance. Les résultats de cette étude montrent que les prédictions du rendement de blé après la courte saison de culture corrèle de façon significative avec le rendement annoncé pour le total des trois années combinées (r = 0.986), de même qu'avec chaque année prise séparément (r compris entre 0.963, 0.846, et 0.778, respectivement). Pour les régions aux longues saisons de culture, les prédictions étaient moins performantes pour le total des trois années combinées (r = 0.681), de même que pour chaque année prise séparément (r entre prédiction et observation 0.715, 0.644, 0.696, respectivement). Ces résultats indiquent que les prédictions des rendements pour la courte saison sont plus précises que pour la longue saison. On peut aussi supposer que si d'autres variables indépendantes, telles que la morphologie des sols et la question de la gestion des fermes étaient inclues dans l'analyse, les prédictions des rendements de blé seraient plus exactes.

ArcView 3.2, 1996. ArcView, The geographic information systems for everyone. Environmental Systems Research Institute Inc. (ESRI), Redland California. 92373- 8100 USA.

Ahlrichs, J. S., and Bauer, M. E. 1983. Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies. Agronomy Journal 75:987-93.

Apan, A. A., and Peterson, J. A. 1998. Probing tropical deforestation: The use of GIS and statistical analysis of georeferenced data. Applied Geography 18(2):137-52.

Ashcroft, P. M., Catt, J. A., Curran, P. J., Munden, J., and Webster R. 1990. The relation between reflected radiation and yield on the Broadbalk winter wheat experiment. International Journal of Remote Sensing 11(10):1821-36.

Boissard, P., Pointel, J.-G., and Huet, P. 1993. Reflectance, green leaf area index and ear hydric status of wheat from anthesis until maturity. International Journal of Remote Sensing 14(14):2713-29.

Boken,V. K., and Shaykewich, C. F. 2002. Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index. International Journal of Remote Sensing 23(20):4155-68.

Brown, D. S. 1952. Climate in relation to deciduous fruit production in California, PartV: The use of temperature records to predict the time of harvest of apricots. Proceedings of the American Society Horticultural Science 60:197-202.

Cicone, R. C., and Metzler, M. D. 1984. Comparisons of landsat MSS, comparison of landsat mss, nimbus-7 czcs, and noaa- 7 avhrr features for land-use analysis. Remote Sensing of Environment 14 (1-3): 257-265.

Curran, P. J. 1980. Multispectral remote sensing of vegetation amount. Progress in Physical Geography 4:315-41.

Dalezios, N. R., Loukas, A., and Bampzelis, D. 2002. Assessment of NDVI and agrometeorological indices for major crops in central Greece. Physics and Chemistry of the Earth 27:1025-29.

Food and Agriculture Organization (FAO)1978. Crop calendars: FAO plant production and protection. Paper no 12, Rome: UN/FAO.

Fung, T., and Jim, C.Y. 1998. Assessing and modeling hill fire impact in county parks with SPOT HRV images and GIS. Geocarto International 13(1):47-58.

Genovese, G., Vignolles, C., Negre, T., and Passera G. 2001. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting: A case study on Spain. Agronomie 21(1):91-111.

Gilabert, M.A., Maselli F., Conese, C., and Bindi, M. 1995. Characterization of primary productivity levels of Niger by means of NOAA NDVI variations. Geocarto International 10(4):31-41.

Gupta, R. K., Prasad, S., Rao, G. H. and Nadham, T. S.V. 1993. District level wheat yield estimation using NOAA/AVHRR NDVI temporal profile. Advances in Space Research 13(5):253-56.

Gutman, G. 1989. On the relationship between monthly mean and maximum-value composite normalized vegetation indices. International Journal of Remote Sensing 10(8):1317-25.

Hatfield, J. L. 1983. Remote sensing estimates of potential and actual crop yield. Remote Sensing Environment 13:301-11.

Hochheim, K. P., and Barber, D. G. 1998. Spring wheat yield estimation forWestern Canada using NOAA NDVI data. Canadian Journal of Remote Sensing 24(1):17-27.

Holben, B. N., Tucker, C. J., and Fan, C. J. 1980. Spectral assessment of soybean leaf area and leaf biomass. Photogrammetric Engineering Remote Sensing 45:651-56.

Ichii, K., Kawabata, A., and Yamaguchi, Y. 2002. Global correlation analysis for NDVI and climactic variables and NDVI trends: 1982-1990. International Journal of Remote Sensing 23(18):3873-78.

Idso, S. B., Jackson, R. D., and Reginato R. J. 1977. Remote-sensing of crop yields. Science 196:19-25.

Jackson, R. D., Slater, P. N., and Pinter, P. J. 1983. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote Sensing of Environment 15:187-208.

Jordan, C. F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663. Quoted in A. Meyer and J. A. Martinez-Casasnovas, Prediction of existing gully erosion in vineyard parcels of the NE Spain: A logistic modeling approach, Soil and Tillage Research 50 (1999):319-31.

Kogan, F. 2002. World droughts in the new millennium fromAVHRR-based vegetation health indices. EOS, Transactions, American Geophysiscal Union 83(48):557-63.

Labus, M. P., Nielsen, G. A., Lawrence, R. L., Engel, R. and Long, D. S. 2002. Wheat yield estimates using multitemporal NDVI satellite imagery. International Journal of Remote Sensing 23(20):4169-80.

Lee, R., Yu, F., Price, K. P, Ellis, J., and Shi P. 2002. Evaluating vegetation phenological patterns in Inner Mongolia using NDVI time-series analysis. International Journal of Remote Sensing 23(12):2505-12.

Lieth, H. 1971. The pheno-logistical viewpoint in productivity studies. In Productivity of Forest Ecosystems, Proceedings of the Brussels Symposium edited by P. Duvignead Paris: UNESCO, P.71.

Lieth, H. 1974. Phenology and seasonality modeling. New York: Springer-Verlag.

Lieth, H., and Whittaker, R. H. (eds.) 1975. Primary productivity of the biosphere. New York: Springer-Verlag.

Liu, W. T., and Kogan, F. N. 1996. Monitoring regional drought using the vegetation conditions index. International Journal of Remote Sensing 17(14):2761-82.

Mamat, R. and Mansor, S. B. 1999. Remote sensing and GIS for flood prediction. Proceedings of the Twentieth Asian Conference of Remote Sensing, Hong Kong. http://www.jlgis.cuhk.edu.hk/acrs99/. http://www.jlgis.cuhk.edu.hk/acrs99/

Manjunath, K. R., Potdar, M. B., and Purohit, N. L. 2002. Large area operational wheat yield model development and validation based on spectral and meteorological data. International Journal of Remote Sensing 23(15):3023-38.

Maselli F., Conese, C., Petkov, L., and Gilabert M. A., 1992. Use of NOAA-AVHRR NDVI data for environmental monitoring and crop forecasting in the Sahel: Preliminary results. International Journal of Remote Sensing 13(14):2743-49.

Maselli F., Conese, C., Petkov, L., and Gilabert M. A. 1993. Environmental monitoring and crop forecasting in the Sahel through the use of NOAA NDVI data: A case study: —Niger 1986-89. International Journal of Remote Sensing 14(8):3471-87.

Maselli F., Romanelli, S., Bottai, L., and Maracchi, G., 2000. Processing of GAC NDVI data for yield forecasting in the Sahelian region. International Journal of Remote Sensing. 21(18):3509-23.

Maselli, F., and Rembold, F., 2001. Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogrammetric Engineering & Remote Sensing 67(5):593-602.

Meyer, A., and Martinez-Casasnovas, J. A. 1999. Prediction of existing gully erosion in vineyard parcels of the NE Spain:A logistic modelling approach. Soil and Tillage Research 50:319-31.

Morain, S. A. 1974. Phenology and remote sensing. In Phenology and Seasonality Modeling. Ed. H. Lieth, 55. New York: Springer-Verlag.

Murthy, C. S., Thiruvengadachari, S., Raju, P.V., and Jonna, S., 1996. Improved ground sampling and crop yield estimation using satellite data. International Journal of Remote Sensing 17(5):945-56.

Norwine, J., and Greegor, D. H. 1983. Vegetation classification based on AVHRR satellite imagery. Remote Sensing of Environment 13:69-78.

Odland, J. 1988. Spatial autocorrelation. Vol. 9. Scientific Geography Series. Newbury Park, CA: Sage Publications.

Ormsby, J. P. 1982. Classification of simulated and actual NOAA-6AVHRR data for hydrologistic land surface feature definition. IEEE Transaction in Geoscience and Remote sensing 20:262-267.

Pampel, F.C. 2000. Logistic regression: A primer. Quantitative applications in the social Sciences. Thousand oaks, CA: Sage Publications.

Pascale, A. J. 1972. Biologistical and phenologistical observations. In World Meteorological Organization agricultural meteorology, no. 310: 185-91. Geneva: WMO.

Podolsky, A. S. 1984. New phonology: Elements of mathematical forecasting in ecology. New York: Wiley.

Potdar, M. B. 1993. Sorghum yield modelling based on crop growth parameters determined from visible and near-IR channel NOAAAVHRR data. International Journal of Remote Sensing 14(5):895-905.

Quarmby, N. A., Milnes, M., Hindle, T. L. and Silleos, N. 1993. The use of multi-temporal NDVI measurements fromAVHRR data for crop yield estimation and prediction. International Journal of Remote Sensing 14(2): 199-210.

Rao, G.H., Gupta, R. K. Nadham, T. S. V., and Prasas, S. 1993. NOAA/AVHRR vegetation indices as district level wheat growth indicators. Advances in Space Research 13(5): 249-52.

Rasmussen, M. S. 1992. Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. International Journal of Remote Sensing 13(18): 3431-42.

Rasmussen, M. S. 1997. Operational yield forecast using AVHRR NDVI data: Reduction of environmental and inter-annual variability. International Journal of Remote Sensing 18(5): 1059-77.

Rowbotham, D. N., and Dudycha, D. 1998. GIS modelling of slope stability in Phewa Tal watershed, Nepal. Geomorphology 26: 151-70.

Sarmiento, G., and Monasterio, M. 1983. Life forms and phonology. In Tropical Savannas: Ecosystems of the World. Vol 13, ed. F. Bourlier, 79-85. Amsterdam, The Netherlands: Elsevier.

Schneider, S. R., McMinnis, S. R., and Gatlin, J. A. 1981. The use of NOAAAVHRR visible and near-infrared data for land remote sensing. NOAA Technical Report. Washington, DC: NOAA.

Seaton, H. L. 1955. Scheduling planning and predicting harvesting maturities for processing vegetables. Food Technology 9:202.

Smith, R. C. G., Adams, J., Stephens, D. J., and Hick, P. T. 1995. Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agricultural Research 46:133-25.

Statistical Centre of Iran. Iran statistical year book. http://eamar.sci.or.ir/srch/TOCview.asp?T=L&L=1. http://eamar.sci.or.ir/srch/TOCview.asp?T=L&L=1

Taylor, F. G. 1974. Pheno-dynamics of production in a mesic deciduous forest. In Phonology and seasonality modeling. Ed. H. Lieth, 237-54. New York: Springer-Verlag.

Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127-50.

Tucker, C. J., Gatlin, A., and Schneider, S. R. 1984. Monitoring vegetation in the Nile Delta with NOAA-6 and NOAA-7AVHRR. Engineering Remote Sensing 50:53-61.

Tucker, C. J., Hielkema, J. U., Roffey, J. 1985. Satellite remote sensing monitoring in desert locust breeding areas. International Journal of Remote Sensing 6:127-138.

Tucker, C. J., Holben, B. N., Elgin, J. H., and McMurtrey, J. E. 1981. Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing of Environment 11:171-89.

Tucker, C. J., Vanpreat, C., Boerwinkle, E., and Gaston, A. 1983. Satellite remote sensing of total dry matter accumulation in the Senegalese Sahel. Remote Sensing of Environment 13:461-74.

UNESCO. 1979. Tropical grazing land ecosystems. Paris: UNESCO.

United States Geological Service (USGS). 2003. Land processes distributed active archive center. http://edcdaac.usgs.gov/glcc/glcc.html. http://edcdaac.usgs.gov/glcc/glcc.html

United States Geological Service (USGS). 1993. Eurasia seasonal land-cover characterization. Global land coverage characterization. Active Archive Center. http://lpdaac.usgs.gov/glcc/eadoc2_0.html. http://lpdaac.usgs.gov/glcc/eadoc2_0.html

Vinodgradov, B.V. 1977. Remote sensing and mapping of rangeland. Soviet Journal of Remote Sensing 3:378-392.

VITO, FreeVegetation Products.Vito processing center, 1998-2002. http://free.vgt.vito.be. http://free.vgt.vito.be

Walker, G. K. 1989. Model for operational forecasting of western Canada wheat yield. Agricultural and Forest Meteorology 44:339-51.

Wang, J., Price, K. P., and Rich, P. M. 2001. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing 22(18):3827-44.

Wielgolaski, F. 1974. Phenology in agriculture. In Phenology and Seasonality Modeling, Ed. H. Lieth, p. 369. New York: Springer-Verlag. p. 369-70

Wrigley, N. 1976. An introduction to the use of logit models in geography. Concepts and techniques in modern geography, no. 10. Norwich, U.K.: Geo Abstracts.

Xiao, X., Boles, S., Frolking, S., Salas, W., Moore, B., III, Li, C., He, L., and Zhao, R. 2002. Landscape-scale characterization of cropland in China using vegetation and Landsat TM images. International Journal of Remote Sensing 23(18):3579-94.

  • Download PDF