Editorial Type:
Article Category: Research Article
 | 
Online Publication Date: 14 Mar 2011

Remote Sensing of Surface Moisture in Near Real Time

and
Page Range: 181 – 192
DOI: 10.5555/arwg.7.3.86402v167u83r707
Save
Download PDF

Surface moisture estimates in real time are difficult to accomplish for large areas. This paper investigates the possibility of utilizing satellites' measured radiation to estimate available moisture in real time. Thermal infrared, near infrared, and visible radiation energies are used. These energies are combined to develop a surface moisture index called the Surface Moisture Evapotranspiration (SMET) Index. This index detects available soil and vegetal matter moisture. The parameters of this index are surface temperature (T) and the Normalized Difference Vegetation Index (NDVI). The temperature is estimated from ground thermal radiation. Near infrared and visible radiation energies are converted into NDVI. 1-km NOAA-AVHRR channel 1, 2, and 4 data are used to estimate the ground radiation.

The index is computed for East African arid, semi arid, and humid lands, savannahs, forestlands, and the highlands. Variations of SMET temporally and spatially show similar patterns, such as moisture, rainfall, and their seasonal variation for varied climatic, vegetation, and physiographic regions. SMET spatial distribution is concomitant with rainfall distribution in the region.

It is found that SMET is capable of determining moisture status for very large areas at smaller spatial resolution (less than 1 km). Surface moisture conditions are distinguished for bare soils from uniformly vegetated lands. SMET distinguishes moisture status on similar land-cover types. Clouds are identified and distinguished from ground conditions. The SMET Index has potential uses in climatic monitoring, climatic impact assessment, crop management, and land degradation and environmental quality assessments.

Les estimations en temps réel de l'humidité de surface sont malaisées à établir pour de grands secteurs. Ce texte examine la possibilité d'utiliser le rayonnement du sol mesuré par satellite pour évaluer l'humidité de surface en temps réel. Les rayonnements de l'infrarouge thermique, du proche infrarouge et du visible ont été utilisés; ils ont été combinés pour établir un indice de l'humidité de surface, appelé Indice d'évapotranspiration d'humidité de surface (IEHS ou SMET). Cet indice détecte l'humidité disponible dans le sol et dans la matière végétale; ses paramètres sont la température au sol (T) et l'indice différentiel normalisé de végétation (IDNV ou NDVI). La température est déduite du le rayonnement thermique du sol. Les radiations du proche infrarouge et du visible sont converties en NDVI; les valeurs des canaux 1, 2 et 4 du satellite NOAA-AVHRR, avec une résolution au sol de 1 km, ont été utilisées pour évaluer le rayonnement au sol.

L'indice a été calculé pour les espaces arides, semi-arides et humides, de la savane, des forêts et des hautes terres de l'Afrique de l'Est. Les variations spatiales et temporelles de l'indice montrent des distributions similaires quant à l'humidité, les précipitations et les variations saisonnières pour les différentes régions climatiques, physiographiques et de végétation.

Il a été montré que l'indice peut déterminer l'état de l'humidité pour de très vastes étendues avec une résolution au sol de moins d'un kilomètre. Les conditions d'humidité au sol pour des sols nus ont été évaluées à partir d'espaces à couverture végétale uniforme. L'indice distingue le type d'humidité sur des espaces à occupation du sol similaires. Les nuages sont identifiés et différenciés des conditions au sol. L'indice SMET peut être utlisépour la veille climatique, l'évaluation de changements climatiques, la gestion des récoltes, la dégradation des sols et les évaluations de la qualité environnementale.

Brown, J.W., O. B. Brown, and R. H. Evans. 1993. Calibration of advanced very high resolution radiometer infrared channels:A new approach to non linear correction. Journal of Geophysical Research 98:257–68.

Brown, S. R. (1994). Amendments to NOAA Technical Memorandum 107, Appendix B for NOAA-J/14.Washington, DC: U.S. Department of Commerce.

Carlson, T. N., and F. E. Boland. 1978. Analysis of an urban rural canopy using surface heat flux/temperature model. Journal of Applied Meteorology 17:998–1013.

Carlson, T. N., R. R. Gilles, and E. M. Perry. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews 9:161–73.

Carlson, T. N., E. M. Perry, and T. J. Schmugge. 1990. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. Agricultural and Forest Meteorology 52:45–69.

Casimiro, J. F. 1971. Soil water characteristics, prediction of their curve under field condition. Revista de Ciencias Agronomicas (Mozambique) 24:345.

Cihlar, J., L. St.-Laurent, J. A. Dyer. 1991. Relation between the normalized difference vegetation index and ecological variables. Remote Sensing of Environment 35:279–98.

Cracknell, A. P. 1997. The advanced very high resolution radiometer. Bristol, PA: Taylor and Francis.

Goward, S. N., R. H. Waring, D. G. Dye, and J. Yang. 1994. Ecological remote sensing at OTTER: Macroscale satellite observations. Ecological Applications 4:322–43.

Goward, S. N., Y. Xue, and K. P. Czajkowski. 2002. Evaluating land surface moisture conditions from the remotely sensed temper ature/ vegetation index measurements: An exploration employing the Simplified Simple Biosphere Model. Remote Sensing of Environment 79:225–42.

Gutman, G. G. 1990. Towards monitoring drought from space. Journal of Climate 3:282–95.

Henricksen, B. L., and J.W. Durkin. 1986. Growing period and drought early warning in Africa using satellite data. International Journal of remote Sensing 7:1583–608.

Idso, S. B., T. J. Schmugge, R. D. Jackson, and R. J. Regnato. 1975. The utility of surface temperature measurements of the remote sensing of soil water status. Journal of Geophysical Research 80:3044–49.

Isaaks, E. D., and R.M. Srivastava. 1989. Applied geostatistics. Oxford: Oxford University Press.

Jackson, R. D. 1972. Mean daily rainfall intensity and number of rain days overTanzania. Geografiska Annaler 54A:369–75.

Jackson, R. D., S. B. Idso, R. J. Regnato, and P. J. Pinter. 1981. Canopy temperature as crop water stress indicator. Water Resources Research 17:1133–38.

Jackson, T. J. 1993. Measuring surface soil moisture using passive microwave remote sensing. Hydrologic Processes 7: 139–52.

Jackson, T. J. 1997. Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resources Research 33:1475–84.

Kidwell, K. B. 1998. NOAA polar orbiting data user guide, August 1997 Revision. U.S. Department of Commerce, National Climatic Data Centre, Satellite Service Branch.

Kogan, F. N. 1990. Remote sensing of weather impacts of vegetation in non homogenous areas. International Journal of Remote Sensing 11:1405–19.

Kogan, F. N. 1995. Drought of the late 1980s as in the United States as derived from NOAA polarorbiting satellite data. Bulletin of American Meteorological Society 76: 655–68.

Lambin, E.F, and D. Ehrlich. 1996. The surface temperature vegetation index space for land cover change analysis. International Journal of Remote Sensing 17:463–87.

Moeremans, B., and S. Dautrebande. 2000 Soil moisture evaluation by means of multi-temporal ERS SAR PRI images and interferometric coherence. Journal of Hydrology 234:162–69.

Moran, M. S, T. R. Clarke, Y. Inoue, and A. Vidal. 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment 23:246–53.

Nemani, R., L. Pierce, S. Running, and S. Goward. 1993. Development of satellite derived estimate of surface moisture status. Journal of Applied Meteorology 2:548–57.

Nicholson, S. E., M. L. Davenport, A. R. Malo. 1990. A comparison of the vegetation response to rainfall in the Sahel and East Africa using normalized difference vegetation index from NOAAAVHRR. Climatic Change 17:207–41.

Price, J. C. 1980. The potential of remotely sensed thermal infrared data to infer surface moisture and evaporation. Water Resource Research 16:781–95.

Rao, C. R. N. 1993. Non-linearity corrections for the thermal infrared channels of the advanced very high resolution radiometer: Assessment and recommendations. NOAA Technical Report NESDIS 69. Washington, DC: U.S. Department of Commerce.

Rao, C. R. N., and J. Chen. 1999. Revised post launch calibration of Channel 1 and 2 of the advanced very high resolution radiometer on board the NOAA 14 spacecraft. NOAATechnical Report, Revised Calibration NOAA-14,AVHRR Channel 1 and 2. Washington, DC: U.S. Department of Commerce.

Rowntree, P. R, and J.A. Bolton. 1983. Simulation of atmospheric response to soil moisture anomalies over Europe. Journal of Royal Meteorological Society 109:501–9.

Rubio, E.,V. Caselles, and C. Badenas. 1997. emissivity measurements of several soils and vegetation in the 8–14 m waveband: Analysis of two field methods. Remote Sensing of Environment 59:490–521.

Seguin, B., J. P. Lagouarde, and M. Savane. 1991. The assessment of regional crop water conditions from meteorological satellite thermal infrared data. Remote Sensing of Environment 35:141–48.

Schmugge, T. J., P. E. O'Neill, and P. E. Wang. 1986. Passive microwave soil moisture research. IEEE Transactions on Geoscience and Remote Sensing 24:12–22.

Thunnissen, H. A. M., and G. J. A. Nieuwenhuis. 1990. A simplified method to estimate regional 24-h evapotranspiration from infrared data. Remote Sensing of Environment 31: 211–25.

Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127–50.

Ungnai, L. S., and F. N. Kogan. 1998. Drought monitoring and corn yield estimation in southern Africa fromAVHRR data. Remote Sensing of Environment 63:219–32.

Wigneron, J. P., Y. Kerr, A. Chanzy, and Y. Q. Jin. 1993. Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sensing of Environment 46:61–72.

  • Download PDF